&iﬂ.x'«,W‘- : '.'.-‘L’" oy "3‘-"!?"‘ s e “’‘E‘“‘“" e
X T . ' (0/ -'\|" ‘ f ysll" r\) " '."." ;.".“ e
) .._',-“ ..-1'.’ ,'.'.."_""

o
: . A
—) i - e, b - AW .

51

FUROFILING CON'FERENCE " 171819 JUNE 2019

o S0 e e T B

i3S rlghet il RSN .~ SHE 1SN ey L

GENERATING SAMPLE
INSTANCES SATISFYING o k,
TAXONOMY ASSERTIONS Bomess Anayet

FUJITSU

Frankfurt, 18 June

O™ 4

‘ (((C, Rl

AGENDA

Project background

Assertion solving process - simplified

Challenges: variable dependency, multiple executions,
more supported expressions (... and many other)

Assertion solving process - enhanced

Roadmap

f((@ urofilinmg

Project background

PROJECT BACKGROUND - PROBLEM DEFINITION

When a taxonomy contains a formula linkbase (i.e. a validation layer), then

immediately several questions arise (of interest to a taxonomy developer and
an end user alike):

= are the assertions correct from syntactical and semantical viewpoint?

* how to document the intended meaning of an assertion e.g. which reports
or tables are impacted?

" how to figure out which facts are evaluated by an assertion?

PROJECT BACKGROUND - PROBLEM DEFINITION

Looking at an assertion's XBRL definition, it is hard to fully understand its meaning. And
there can be hundreds of assertions defined in one entrypoint.

E}M <Value Assertion ID : s2md_BV328_1-3 Severity : ERROR : iafinumeric-equal(3a, iaf:sum{{sh, 5c))) [dimensional]
| -zPrecondition &find:tS.02.01

. -=zPrecondition’> SregularReporting

EI@ ga <Fact Variable = ID : s2md_BV328_1-3.a Concept : s2md_met:mi378 Fallback value : 0

L <Concept Name Filter = ID : s2md_BV328_1-3.a.f5 Concept : s2md_met:mi378

EI@ th <Fact Variable> ID : s2md_BV328_1-3.b Concept : s2md_met:mi348 Fallbadk value : 0

. Lo <Concept Name Filter> ID : s2md_BV328_1-3.b.f10 Concept : s2md_met:mi343

EI@ gc <Fact Variable> ID : s2md_BV328_1-3.c Concept ; s2md_met:mi347 Fallback value : 0

----- D <Explict Dimension Filter = ID : s2md_BV328_1-3.f1 Dimension : s2c_dim:VG Member : s2c_AM:x80
Iél---ci_r'-‘lessages:b

- [Unsatisfied] [Message] [en] BV328_1-3: [(c0010]] {{5.02.01.02.01, r0850}} = {{5.02.01.02.01, r0860}} + {{5.02.01.02.01, r0870}}

Still we can glean some basic understanding:

= there are 3 fact variables Sa, Sb and Sc which impose constraints on which facts will take
part in assertion's evaluation

= facts are constrained by their concept (and common dimension)
= expression being evaluated is (in effect) Sa = sum(Sb, Sc)

(((Q urofilinmg

!Iv

PROJECT BACKGROUND - PROPOSED SOLUTION

FI Table Errars Salvency I
A solution is to provide sample correct Basic Informstion - General x =
. 5.01.02.04.01 Basic Informati | S —
data (XBRL faCtS)’ for eaCh assertion or |:luzm—GvanvaraI 0 Financial liabilties other than debts owed to credit inatit,
i i ; | & intermediari bl
a group of assertions associated with an mﬁalm oest] 0] | r::i”n;aunr';ice'i;;:;efr'es e
entrypoint. Then, a user can visualize remians, s and exenses e
the facts on a report. bylne of busiess - ibilties [Subordnated fabilties not in Basic Ow 2000
5.05.01.02.01 Non-Life (direc R ——
sl s - [any other Iiabil’rtif; bfifﬁiﬁ“:i‘ﬂnﬂm o =
:L’L?;‘;:lnrjnﬁ:;pm non-prop Total labilties
W < | £
Once data has been presented on a 5
table (here: Balance sheet) it is | |
. Tasklist (@) FormulaEmor Fact Information Table structure Console Footnotes Query Table
immediately visible that BV328 1-3 just e
checks the expression: Error List
. e . i |
Subordinated liabilites (SL) = - — Emm A —
1 s2md_BV328 1-3 iaf:numeric-eguali3a, iaf:zum((3b, c)))
SL not in Basic Own Funds + SL in Basic Own Funds
Relating Item Message
Table Variable Element Value
s2md_met:mi378 3000
Balance sheet b[1] s2md_met:mi34a 2000
Balance sheet 1] |slmd_met:mi34? 1000

(((C_U"OWS E 5

K

BENEFITS OF XBRL ASSERTION SOLVER

The idea of providing a tool (XBRL Assertion Solver) which can generate correct set of facts has been

a recurring topic which we encountered at various conferences, projects or less formal
conversations.

XBRL Assertion Solver generating instances based on assertions from a taxonomy can be used for a
variety of purposes:

= providing illustrative examples of correct and incorrect instances

= formula linkbase quality assurance e.g.:
- verifying whether for each assertion there exists a set of satisfying facts
- verifying whether a set of assertions can be satisfied by a set of facts

= generating realistic test data for performance benchmarks of Formula processors

Assertion solving process -
simplified

({(C urofilinmg

ASSERTION SOLVING PROCESS - OVERVIEW

INPUT:
taxonomy,
assertion ids

y

Assertion Solver

creating facts
satisfying the
assertions

Assertion Solver takes as input any taxonomy
and set of assertion ids (belonging to the
taxonomy) and produces an instance which
satisfies the set of assertions and contains just
the facts which are used by the assertions.

v

OUTPUT:
correct instance

Assertion Solver

retrieve fact variables
and expression from each
assertion

v

create facts with values
satisfying the expressions

v

create an instance with
facts

XBRL FACTS AND ASSERTIONS - A QUICK OVERVIEW

Before we will decompose the assertion solving process any further let's recall the basic characteristics
of XBRL facts and assertions.

A simple numeric XBRL fact is a unit of reported information, composed of:

1/ value (and its accuracy)
2/ datapoint aspects: concept and dimensions
3/ other aspects*: period, entity and unit.

FACT = (EXTENDED) DATAPOINT + VALUE

Aspect Aspect Value

period 2018-01-31
t.t 815600A60E71CFC3A230
entty .../is0/17442
unit EUR

Thus, the Assertion Solver, when constructing facts, needs to take care both of datapoints (which must satisfy
aspect conditions on variables Sa, Sb and Scin case of BV328_1-3) and values (which must satisfy the expression,

Sa = sum(Sb, Sc)).

$a=>FACT_1
value

3000

Aspect Aspect Value

concept

s2md_met:mi378

Sb => FACT_2

value

1000

concept

Aspect Aspect Value

s2md_met:mi348

Sc=>FACT_3

value

2000

concept

Aspect Aspect Value

s2md_met:mi347

s2c_dim:VG

s2c_AM:x80

s2c_dim:VG

s2c_AM:x80

s2c_dim:VG

s2c_AM:x80

* For simplification we assume that period, entity and unit aspects are identical to all facts and fixed part of any (extended) datapoint

(((Q urofiling E

ASSERTION SOLVING PROCESS - OVERVIEW

INPUT:
taxonomy,
assertion id

Assertion Solver

A 4

A 4

retrieve fact
variables and
expression from
assertion

Expression Solver

find values
satisfying the
expression

h 4

Datapoint Creator

create datapoint
for each fact
variable

combine
datapoints with

<
values and create

instance facts

A 4

create an instance

with facts

A 4

OUTPUT:
correct instance

The solver must perform two operations when
solving an assertion:

1/ create datapoints (set of aspects) satisfying the
conditions associated with fact variable s filters

2/ find values which satisfy the expression associated
with the assertion

In effect we can identify two major modules of the
Assertion Solver: Datapoint Creator and Expression
Solver.

In the final step, a datapoint and value are combined
together as an XBRL fact.

The first task (creating a datapoint) is XBRL-specific.
The second (finding a numeric solution) is more
common and an existing constraint solver library can
be used e.g. Choco (http://www.choco-solver.org/)
or JaCoP (https://github.com/radsz/jacop)

—
L N
. aarevimmbls pa T e -9

SOLVING A SINGLE ASSERTION - EXAMPLE

taxonomy: http://eiopa.europa.eu/.../mod/qrg.xsd
assertion id: s2md_BV328_1-3

Assertion Solver

v

4

expression: $a =sum(Sbh,Sc)
fact variables:
s2md_BV328 1-3.a
s2md_BV328 1-3.b
s2md_BV328 1-3.c

Expression Solver

Datapoint Creator

VALUES:

s2md_BV328 1-3.a => 3000
s2md_BV328_1-3.b => 1000
s2md_BV328_1-3.c => 2000

DATAPOINTS:

s2md_BV328 1-3.a => CONCEPT(s2md_met:mi378)|s2c_dim:VG=s2c_ AM:x80
s2md_BV328 1-3.b => CONCEPT(s2md_met:mi348)|s2c_dim:VG=s2c_AM:x80
s2md_BV328 1-3.c => CONCEPT(s2md_met:mi347)|s2c_dim:VG=s2c_ AM:x80

FACTS:

> s2md_BV328 1-3.a=>FACT_1
s2md_BV328 1-3.b=>FACT 2 >
s2md_BV328 1-3.c=>FACT 3

A

Create instance

({(C urofilinmg

A\ 4
OUTPUT:
correct instance

11

WHAT EXPRESSIONS CAN BE SOLVED?

The numeric expression solver has been implemented with the use of JaCoP - an open-source constraint
solver*,

The solver supports the following (and many more) constraints (or operators):
- arithmetic: +,-,2, /, =,%2, <,<, >,2, X mod Y, X'
- logical: or, and

- conditional: if ... then ... (else ...)

Examples of assertions from grg entrypoint (Solvency Il taxonomy), with percentage occurrence, which
can be easily solved using JaCoP.

#, count, percent, simplified expression, sample assertion id
1, 28.70%, Sa =sum(Sb, Sc, ...), [s2md_BV313_1-3]
2,9.57%, Sa = sum(Sb, Sc, ..., -1*(5d)), [s2md_BV208-2]

3, 7.83%, Sa = sum(Sh, -1*(Sc)), [s2md_BV330_1-3]

4, 6.96%, Sa = Sb, [s2md_BV139-4]

*see: http://jacopguide.osolpro.com/guidelaCoP.pdf

(eoss KB .

Challenges:

= variable dependency

= multiple executions of an assertion
" more supported expressions

... and many other

CHALLENGE 1 - ASSERTION DEPENDENCY

Fact variables in various assertions may reference the same fact.

The solver must identify whether any two variables are equivalent or not before finding values
satisfying expressions in question. Equivalent variables occur e.g. in assertions BV95-1 and BV102-1
belonging to Solvency Il grg entrypoint.

Total Tier 1 - Tier 1 - Tier 2 Tier 3
unrestricted restricted
coo10 Coozo Coo030 Coo40 Coos0

Encillary awen
ffLincls IInpaid and uncalied ordinary share capital callable on demand RO300
IInpaid and uncalled initial funds, members' contributions or the ROS10

Equivalent basic own fund item for mutual and mutual - type
underttakings, callakle on demand

Unpaid and uncalled preference shareg callable on demand RO320
1 legally hinding commitment to subscribe and pay for RO330
Eubardinsted liabilities on demand

Letters of credit and guarantees under Aricle 96021 of the O340

Directive 20094 353/EC
|etters of credit and guarantees other than under Aricle 9602 RO350

of the Directive 20094 33EC
Fupplementary members callz under first subparagraph of ROSE0
rticle 9603 of the Directive 20094 S5/EC
Fupplementary members calls - other than under first ROSY0
Eubparagraph of Adicle 9603) of the Directive 200941 35/EC
Mon available ancillary own funds at group level ROZE0 I
Other ancillary own funds RO350 |
[Total ancillary own funds RO400 %
BV95-1: $a = sum(sum($b)-1*$c, $d) BV102-1: $a = sum($b,$c)

BV95-1.$c = BV102-1.$a variables reference the same fact
and this must be taken into account by the solver!

(= Bey L

14

CHALLENGE 2 - MULTIPLE EXECUTIONS OF AN ASSERTION

Dependency between assertions can get even trickier when an assertion is executed multiple times (on different
sets of facts from the same instance).

In the example below, the fact associated with Sb variable of BV102-1, causes second execution of the BV95-1
assertion! So we need to index each individual assertion occurrence in order to properly identify variables and then
find out whether they are equivalent. In the example, there are 3 occurences of assertions: BV102-1[0], BV95-1[0]

and BV95-1[1].
BV95-1[1]: $a = sum(sum($b), -1*$c, $d)

(((@ urofilinmg

A\
Total Tier 1 - Tier 1 - \ Tier 2 Tier 5
unrestricted restricted
como Coozo cooan Coo40 Coos0

W ncillary owen
s Unpaid and uncalled ordinary share capital callable on demand RO300 — 35 —& 34

Unpaid and uncalled initial funds, members' contributions or the RO310

equivalent basic own fund item for mutual and mutual - type 25 o9

undertakings, callable on demand

Unpaid and uncalled preference shares callable on demand R0O320 48 95

I legally hinding commitment to subscribe and pay for RO330

Subgrdi?:uated Ii:bil'rties on demand r $b i $b 18

| etters of credit and guarartees under Article 96020 of the O340 100 53

Diirective 20094 35/EC

| etters of credit and guarartees other than under Article S9602) RO350 42 7

Iof the Directive 20094 38/EC

Fupplementary members calls under first subparagraph of ROSE0 o5, 100

IaHicle 9603 of the Directive 20094 35/EC

Fupplementary members calls - other than under first ROSTO o 91 Le 55

Eubparagraph of Article 96030 of the Directive 20098 33EC

MNan available ancillary own funds at group level RO330 7 g b 3 C ?D.

Other ancillary own funds R0O350 71 5o
[Total ancillary own funds RO400 ||=$a -1 a -35] \

BV95-1[0]: $a = sum{sum($b)-1*$c, $d)

_—

BV95-1[0].$¢ = BV102-1[0].$a

BV95-1[1].$¢ = BV102-1[0].$b

equivalent variables must have same 1\.'5|Iué35‘1':r1 02-1[0]: $2 = sum($h,3c)

ASSERTION SOLVING PROCESS - MULTIPLE ASSERTIONS

INPUT:
taxonomy,
list of assertion ids

When finding a solution for multiple assertions

Assertion Solver v : additional steps must be performed before
for each assertion
retrieve fact variables creating datapoints and before numeric expression
and expression solving.
v
rewrite expressions
> identify equivalent The solver must identify whether fact variables
(use one name for < fact iabl)) . .)
equivalent variables) act variables used in various assertions are equivalent i.e. the
l { filters associated with a fact variable (Sa) define
SqerEEs e 5o ar Datapoint Creator the s:ame ﬁlt(?rmg conditions as 1fhe filters
PR, associated with another fact variable (Sb). If so,
INa values H . . .
tisfving all create datapoint both variables are replaced with a new variable
satistying a for each distinct) . .
expressions fact variable (Sx1) being a representative of the entire
equivalence set.
combine datapoints
> withvaluesand < Datapoints are created only for the
create instance facts - . .
! representatives of the variable equivalence sets
and expressions to be solved are rewritten before
create an instance submitting to the expression solver.
with facts
\ 4
OUTPUT:
correct instance

(o .~ K .

SOLVING MULTIPLE ASSERTIONS - EXAMPLE

taxonomy: http://eiopa.europa.eu/.../mod/qrg.xsd
list of assertion ids: s2md_BV139-4, s2md_BV328_1-3

({((urofilinng

Assertion Solver

4

expressions: s2md_BV139-4: Sa = Sb, s2md_BV328 1-3: $a =Sb + Sc
fact variables: s2md_BV139-4.5a, s2md_BV139-4.Sb
s2md_BV328 1-3.Sa,s2md_BV328 1-3.Sb, s2md_BV328 1-3.5c

A

= Svml

Svm2 = Svm3 +/Sxm1

CONVERTED EXPRESSIONS:

|

Expression Solver

VALUES:

Sxm1 => 1000
Svm1 => 1000
Svm2 => 3000
Svm3 => 2000

EQUIVALENT VARIABLES:
s2md_BV139-4.$a =>{$xm1]

< s2md_BV139-4.Sb => Svm1

s2md_BV328 1-3.Sa =>Svm?2
s2md_BV328_1-3.Sb =>Svm3
s2md_BV328_1-3.5c =>[$xm1]

v

FACTS:

Sxm1=>FACT 1
Svm1 =>FACT 2
Svm2 => FACT 3

4
Datapoint Creator
DATAPOINTS:
Sxm1 => CONCEPT(s2md_met:mi347)|s2c_dim:VG=s2c_AM:x80
Svml =>

CONCEPT(s2md_met:mi389)|s2c_dim:VG=s2c_AM:x80|s2c_dim:C
M=s2c_CS:x1

Svm?2 => CONCEPT(s2md_met:mi378)|s2c_dim:VG=s2c_AM:x80
Svm3 => CONCEPT(s2md_met:mi348)|s2c_dim:VG=s2c_AM:x80

Create

A 4

Svm3 => FACT 4

instance

A 4

OUTPUT:
correct instance

17

CHALLENGE 3 - MORE SUPPORTED EXPRESSION TYPES 1/3

Looking at top 10 most frequently occurring expression types (accounting for approx. 50% of all
expressions) in Solvency Il, we can find out that we can categorize them in two groups:

1. simple numeric expression:

a comparison between results of arithmetic operations on fact variables (e.g. Sa = sum(Sb, Sc))

2. QName implication numeric:

implication of the form: if (QName(Sa) = literal) then simple_numeric_expression
Easily we can add two more categories:
3. simple text expression:

expressions with form: matches(Sa, reqular_expression)

4. QName implication text:

implication of the form: if (QName(Sa) = literal) then simple_text _expression

CHALLENGE 5 - MORE SUPPORTED EXPRESSION TYPES 2/3

Examples:

simple numeric:
iaf:numeric-equal(Sa, Sb)
iaf:numeric-equal(Sa, iaf:max((Sb, Sc)))
iaf:numeric-equal(Sa, iaf:max((0, (iaf:sum((Sb, Sc, $d))))))

QName implication numeric:
if (Sa = xs:QName('s2c_CN:x1'")) then (iaf:numeric-equal(Sb, Sc)) else (true())
if (Sa = xs:QName('s2c_CN:x1')) then (iaf:numeric-equal(Sb, iaf:sum((Sc, Sd, Se)))) else (true())
if (Sa = xs:QName('s2c_CN:x59')) then (Sb ge abs(Sc)) else (true())

simple text:

matches(Sa, 'M((1$)](99)){1}S")

19

CHALLENGE 5 - MORE SUPPORTED EXPRESSION TYPES 3/3

In order to handle the 4
categories of expressions, the
solver needs to:

1. correctly recognize an
expression's category

2. check whether an
implication's predecessor
holds (in case of QName
implications)

3. route the expression to
appropriate solver: numeric
solver (based on JaCoP) or
text solver (Generex library)

((

/

INPUT: List of
any expressions

/Z_,

ANTLR4 simple
XPath 2.0 Parser

functions: not,
matches, QName

(interval
arithmetic)

Supported
SAE TR ((custom functions

I
Import
Y

For each

parsed expression:

—E rror7/

LIST 01:
Non simple-XPath
expressions

Expression Sorter

Numeric expressions

QName Implications

Text expressions

4

-
recognizer recognizer recognizer Not sorted
I LIST 4: Un-sorted
simple XPath
v ¥ ¥ A4 expressions
LIST N: LIST QN: QName LIST QT: QName LIST T:
Numeric implications - implications - Text
expressions numeric text expressions
Expression Solver
A4 A4
NUMERIC TEXT
SOLVER SOLVER

-
k 0
. aarevimmbls pa T e -9

ROADMAP

Version: 0.1 Version: 0.2 Version: 0.3
November 2018 June 2019 2019
DataAmplified, Dubai Eurofiling Conf. Frankfurt ?7??

N\ VA /

—>
G)alz \ @“: \ /requirements: \

A generate correct facts for A generate correct facts for Solvency Il A increase coverage to 90%
a demo taxonomy taxonomy for ars, qrg, qrb
restrictions: enhancements: A finalize text and QName
A single execution of an A all formula filters supported implication solvers'
assertion A multiple executions of an assertion implementation
A only concept and A any number of facts per sequence A command line interface
dimensional formula variable Q EBA taxonomy tests /
filters A preconditions: filing indicators and
A single fact per sequence enums
variable A formal grammar (ANTLR) of
only numeric expressions

21

supported expressions
{POC: text expressions, QName
implications

(((C urofilinmg

(((C urofilinmg

SOLVING SOLVENCY Il ENTRYPOINTS

Statistics from numeric solver (using Formula Solver v.0.2) for Solvency Il entrypoints: qrg, grb and ars:

3k 3k 3k 3k 3k 3k 3k 3k 3k 5k %k %k 5k 3k %k >k 5k 5k %k >k 5k 5k %k %k >k %k %k %k %k %k k

ENTRYPOINT:
....solvency2/2017-07-15/mod/qgrg.xsd

3k 3k 3k 3k 3k 3k 3k 5k 3k 5k %k >k 5k 3k %k >k 3k 5k k >k %k 5k %k %k >k %k %k %k 5k %k k

CATEGORIZED EXPRESSIONS:
All: 107*
Numeric: 70; pct of total: 65.42%
Uncategorized: 32; pct of total: 29.91%

>k 3k >k 3k 5k 3k 5k >k 5k 3k 5k >k 5k 3k %k ok >k >k %k >k %k 3k %k %k %k %k %k %k *k %k %

VALIDATION RESULTS:
Number of assertion occurrences: 226
Number of success evaluations: 226
Number of failed evaluations: 0

3k 3k 3k 3k 3k 3k %k 5k 5k 3k %k 5k 5k 3k %k %k 5k 3k %k 5k 5k %k %k >k %k %k %k %k %k %k %k

ENTRYPOINT:
....solvency2/2017-07-15/mod/qrb.xsd

3k 3k 3k 3k 5k 3k sk 5k 3k 3k %k 5k 5k 3k %k >k 5k 3k %k 5k 5k %k %k >k %k %k %k %k %k %k %k

CATEGORIZED EXPRESSIONS:
All: 167*
Numeric: 127; pct of total: 76.05%
Uncategorized: 36; pct of total: 21.56%

>k 3k 3k 3k 5k 3k 3k >k 5k >k 5k >k 5k %k 5k >k 5k %k %k >k %k >k %k >k %k >k %k %k *k %k %

VALIDATION RESULTS:
Number of assertion occurrences: 361
Number of success evaluations: 347
Number of failed evaluations: 14

3k 3k 3k 3k 5k 3k 3k 5k 5k 3k %k 5k 5k 3k %k %k 5k %k %k 5k 5k %k %k %k %k %k %k %k %k %k %k

ENTRYPOINT:
....solvency2/2017-07-15/mod/ars.xsd

3k 3k 3k 3k 3k 3k sk 5k 3k 3k sk 5k 5k 3k %k >k 5k 5k %k 5k 3k 5k %k >k %k %k %k %k %k %k %k

CATEGORIZED EXPRESSIONS:
All: 1286*
Numeric: 408; pct of total: 31.73%
QName implications numeric: 474; pct
of total: 36.86%
Uncategorized: 392; pct of total: 30.48%

>k 3k 3k ok 5k 3k 5k >k 5k >k 3k >k 5k %k 5k >k 5k >k %k >k %k 3k %k >k %k >k %k %k %k %k %

VALIDATION RESULTS:
Number of assertion occurrences: 1318
Number of success evaluations: 1315
Number of failed evaluations: 3

*some expressions (e.g. existence checking or duplicated) have been filtered-out before sending to the solver

k. :

CONTACT

Eugeniusz TomaszewsKi
Business Analyst

©
FUJITSU

FQS POLAND LIMITED

E-Mail: xbrl@fgs.pl

