
Frankfurt, .

GENERATING SAMPLE
INSTANCES SATISFYING
TAXONOMY ASSERTIONS

Eugeniusz Tomaszewski
Business Analyst

18 June

AGENDA

1. Project background

2. Assertion solving process - simplified

3. Challenges: variable dependency, multiple executions,

more supported expressions (... and many other)

4. Assertion solving process - enhanced

5. Roadmap

1

Project background

PROJECT BACKGROUND - PROBLEM DEFINITION

When a taxonomy contains a formula linkbase (i.e. a validation layer), then
immediately several questions arise (of interest to a taxonomy developer and
an end user alike):

 are the assertions correct from syntactical and semantical viewpoint?

 how to document the intended meaning of an assertion e.g. which reports
or tables are impacted?

 how to figure out which facts are evaluated by an assertion?

3

PROJECT BACKGROUND - PROBLEM DEFINITION

Looking at an assertion's XBRL definition, it is hard to fully understand its meaning. And
there can be hundreds of assertions defined in one entrypoint.

4

Still we can glean some basic understanding:

 there are 3 fact variables $a, $b and $c which impose constraints on which facts will take
part in assertion's evaluation

 facts are constrained by their concept (and common dimension)

 expression being evaluated is (in effect) $a = sum($b, $c)

PROJECT BACKGROUND - PROPOSED SOLUTION

A solution is to provide sample correct
data (XBRL facts), for each assertion or
a group of assertions associated with an
entrypoint. Then, a user can visualize
the facts on a report.

Once data has been presented on a
table (here: Balance sheet) it is
immediately visible that BV328_1-3 just
checks the expression:

Subordinated liabilites (SL) =

SL not in Basic Own Funds + SL in Basic Own Funds

5

BENEFITS OF XBRL ASSERTION SOLVER

The idea of providing a tool (XBRL Assertion Solver) which can generate correct set of facts has been
a recurring topic which we encountered at various conferences, projects or less formal
conversations.

XBRL Assertion Solver generating instances based on assertions from a taxonomy can be used for a
variety of purposes:

 providing illustrative examples of correct and incorrect instances

 formula linkbase quality assurance e.g.:

 verifying whether for each assertion there exists a set of satisfying facts

 verifying whether a set of assertions can be satisfied by a set of facts

 generating realistic test data for performance benchmarks of Formula processors

6

Assertion solving process -
simplified

ASSERTION SOLVING PROCESS - OVERVIEW

8

Assertion Solver

INPUT:
taxonomy,

assertion ids

creating facts
satisfying the

assertions

OUTPUT:
correct instance

Assertion Solver takes as input any taxonomy
and set of assertion ids (belonging to the
taxonomy) and produces an instance which
satisfies the set of assertions and contains just
the facts which are used by the assertions.

Assertion Solver

create facts with values
satisfying the expressions

create an instance with
facts

retrieve fact variables
and expression from each

assertion

XBRL FACTS AND ASSERTIONS - A QUICK OVERVIEW

Before we will decompose the assertion solving process any further let's recall the basic characteristics
of XBRL facts and assertions.

9

A simple numeric XBRL fact is a unit of reported information, composed of:
1/ value (and its accuracy)
2/ datapoint aspects: concept and dimensions
3/ other aspects*: period, entity and unit. period 2018-01-31

entity

unit EUR

815600A60E71CFC3A230
.../iso/17442

Aspect Aspect Value

FACT = (EXTENDED) DATAPOINT + VALUE

* For simplification we assume that period, entity and unit aspects are identical to all facts and fixed part of any (extended) datapoint

Thus, the Assertion Solver, when constructing facts, needs to take care both of datapoints (which must satisfy
aspect conditions on variables $a, $b and $c in case of BV328_1-3) and values (which must satisfy the expression,
$a = sum($b, $c)).

concept s2md_met:mi378

s2c_dim:VG s2c_AM:x80

concept s2md_met:mi348

s2c_dim:VG s2c_AM:x80

$a => FACT_1

Aspect Aspect Value

$b => FACT_2

Aspect Aspect Value

concept s2md_met:mi347

s2c_dim:VG s2c_AM:x80

$c => FACT_3

Aspect Aspect Value

value 3000 value 1000 value 2000

ASSERTION SOLVING PROCESS - OVERVIEW

Assertion Solver

Expression Solver Datapoint Creator

Solving a single assertion

INPUT:
taxonomy,
assertion id

create datapoint
for each fact

variable

OUTPUT:
correct instance

find values
satisfying the

expression

combine
datapoints with

values and create
instance facts

create an instance
with facts

retrieve fact
variables and

expression from
assertion

The solver must perform two operations when

solving an assertion:

1/ create datapoints (set of aspects) satisfying the

conditions associated with fact variable s filters

2/ find values which satisfy the expression associated

with the assertion

In effect we can identify two major modules of the

Assertion Solver: Datapoint Creator and Expression

Solver.

In the final step, a datapoint and value are combined

together as an XBRL fact.

The first task (creating a datapoint) is XBRL-specific.

The second (finding a numeric solution) is more

common and an existing constraint solver library can

be used e.g. Choco (http://www.choco-solver.org/)

or JaCoP (https://github.com/radsz/jacop)

10

SOLVING A SINGLE ASSERTION - EXAMPLE

Assertion Solver

Datapoint Creator

DATAPOINTS:
s2md_BV328_1-3.a => CONCEPT(s2md_met:mi378)|s2c_dim:VG=s2c_AM:x80
s2md_BV328_1-3.b => CONCEPT(s2md_met:mi348)|s2c_dim:VG=s2c_AM:x80
s2md_BV328_1-3.c => CONCEPT(s2md_met:mi347)|s2c_dim:VG=s2c_AM:x80

taxonomy: http://eiopa.europa.eu/.../mod/qrg.xsd
assertion id: s2md_BV328_1-3

expression: $a = sum($b,$c)
fact variables:
 s2md_BV328_1-3.a
 s2md_BV328_1-3.b
 s2md_BV328_1-3.c

Expression Solver

VALUES:
s2md_BV328_1-3.a => 3000
s2md_BV328_1-3.b => 1000
s2md_BV328_1-3.c => 2000

FACTS:
s2md_BV328_1-3.a => FACT_1
s2md_BV328_1-3.b => FACT_2
s2md_BV328_1-3.c => FACT_3

OUTPUT:
correct instance

Create instance

11

WHAT EXPRESSIONS CAN BE SOLVED?

The numeric expression solver has been implemented with the use of JaCoP - an open-source constraint
solver*.

The solver supports the following (and many more) constraints (or operators):

- arithmetic: +,−,∗, /, =,≠, <,≤, >,≥, X mod Y, XY

- logical: or, and

- conditional: if ... then ... (else ...)

*see: http://jacopguide.osolpro.com/guideJaCoP.pdf

Examples of assertions from qrg entrypoint (Solvency II taxonomy), with percentage occurrence, which
can be easily solved using JaCoP.

#, count, percent, simplified expression, sample assertion id
1, 28.70%, $a =sum($b, $c, ...), [s2md_BV313_1-3]
2, 9.57%, $a = sum($b, $c, ..., -1*($d)), [s2md_BV208-2]
3, 7.83%, $a = sum($b, -1*($c)), [s2md_BV330_1-3]
4, 6.96%, $a = $b, [s2md_BV139-4]

12

Challenges:

 variable dependency

 multiple executions of an assertion

 more supported expressions

 ... and many other

CHALLENGE 1 - ASSERTION DEPENDENCY
Fact variables in various assertions may reference the same fact.

The solver must identify whether any two variables are equivalent or not before finding values
satisfying expressions in question. Equivalent variables occur e.g. in assertions BV95-1 and BV102-1
belonging to Solvency II qrg entrypoint.

14

CHALLENGE 2 - MULTIPLE EXECUTIONS OF AN ASSERTION
Dependency between assertions can get even trickier when an assertion is executed multiple times (on different
sets of facts from the same instance).

In the example below, the fact associated with $b variable of BV102-1, causes second execution of the BV95-1
assertion! So we need to index each individual assertion occurrence in order to properly identify variables and then
find out whether they are equivalent. In the example, there are 3 occurences of assertions: BV102-1[0], BV95-1[0]
and BV95-1[1].

15

ASSERTION SOLVING PROCESS - MULTIPLE ASSERTIONS

Assertion Solver

Expression Solver Datapoint Creator

INPUT:
taxonomy,

list of assertion ids

create datapoint
for each distinct

fact variable

OUTPUT:
correct instance

find values
satisfying all
expressions

combine datapoints
with values and

create instance facts

create an instance
with facts

for each assertion
retrieve fact variables

and expression

Solving multiple assertions

identify equivalent
fact variables

rewrite expressions
(use one name for

equivalent variables)

When finding a solution for multiple assertions
additional steps must be performed before
creating datapoints and before numeric expression
solving.

The solver must identify whether fact variables
used in various assertions are equivalent i.e. the
filters associated with a fact variable ($a) define
the same filtering conditions as the filters
associated with another fact variable ($b). If so,
both variables are replaced with a new variable
($x1) being a representative of the entire
equivalence set.

Datapoints are created only for the
representatives of the variable equivalence sets
and expressions to be solved are rewritten before
submitting to the expression solver.

16

SOLVING MULTIPLE ASSERTIONS - EXAMPLE

Assertion Solver

Expression Solver

Datapoint Creator
DATAPOINTS:
$xm1 => CONCEPT(s2md_met:mi347)|s2c_dim:VG=s2c_AM:x80
$vm1 =>
CONCEPT(s2md_met:mi389)|s2c_dim:VG=s2c_AM:x80|s2c_dim:C
M=s2c_CS:x1
$vm2 => CONCEPT(s2md_met:mi378)|s2c_dim:VG=s2c_AM:x80
$vm3 => CONCEPT(s2md_met:mi348)|s2c_dim:VG=s2c_AM:x80

taxonomy: http://eiopa.europa.eu/.../mod/qrg.xsd
list of assertion ids: s2md_BV139-4, s2md_BV328_1-3

expressions: s2md_BV139-4: $a = $b, s2md_BV328_1-3: $a = $b + $c
fact variables: s2md_BV139-4.$a, s2md_BV139-4.$b
 s2md_BV328_1-3.$a, s2md_BV328_1-3.$b, s2md_BV328_1-3.$c

VALUES:
$xm1 => 1000
$vm1 => 1000
$vm2 => 3000
$vm3 => 2000

FACTS:
$xm1 => FACT_1
$vm1 => FACT_2
$vm2 => FACT_3
$vm3 => FACT_4

OUTPUT:
correct instance

CONVERTED EXPRESSIONS:
$xm1 = $vm1
$vm2 = $vm3 + $xm1

Create
instance

EQUIVALENT VARIABLES:
s2md_BV139-4.$a => $xm1
s2md_BV139-4.$b => $vm1
s2md_BV328_1-3.$a => $vm2
s2md_BV328_1-3.$b => $vm3
s2md_BV328_1-3.$c => $xm1

17

CHALLENGE 3 - MORE SUPPORTED EXPRESSION TYPES 1/3

Looking at top 10 most frequently occurring expression types (accounting for approx. 50% of all
expressions) in Solvency II, we can find out that we can categorize them in two groups:

1. simple numeric expression:

a comparison between results of arithmetic operations on fact variables (e.g. $a = sum($b, $c))

2. QName implication numeric:

implication of the form: if (QName($a) = literal) then simple_numeric_expression

Easily we can add two more categories:

3. simple text expression:

expressions with form: matches($a, regular_expression)

4. QName implication text:

implication of the form: if (QName($a) = literal) then simple_text_expression

18

CHALLENGE 5 - MORE SUPPORTED EXPRESSION TYPES 2/3

Examples:
simple numeric:

iaf:numeric-equal($a, $b)
iaf:numeric-equal($a, iaf:max(($b, $c)))
iaf:numeric-equal($a, iaf:max((0, (iaf:sum(($b, $c, $d))))))

QName implication numeric:
if ($a = xs:QName('s2c_CN:x1')) then (iaf:numeric-equal($b, $c)) else (true())
if ($a = xs:QName('s2c_CN:x1')) then (iaf:numeric-equal($b, iaf:sum(($c, $d, $e)))) else (true())
if ($a = xs:QName('s2c_CN:x59')) then ($b ge abs($c)) else (true())

simple text:
matches($a, '^((1$)|(9$)){1}$')

19

CHALLENGE 5 - MORE SUPPORTED EXPRESSION TYPES 3/3

In order to handle the 4
categories of expressions, the
solver needs to:

1. correctly recognize an
expression's category

2. check whether an
implication's predecessor
holds (in case of QName
implications)

3. route the expression to
appropriate solver: numeric
solver (based on JaCoP) or
text solver (Generex library)

20

ROADMAP

Version: 0.1
November 2018

DataAmplified, Dubai

Version: 0.2
June 2019

Eurofiling Conf. Frankfurt

Version: 0.3
2019
???

goal:
• generate correct facts for

a demo taxonomy
restrictions:
• single execution of an

assertion
• only concept and

dimensional formula
filters

• single fact per sequence
variable

• only numeric expressions

goal:
• generate correct facts for Solvency II

taxonomy
enhancements:
• all formula filters supported
• multiple executions of an assertion
• any number of facts per sequence

variable
• preconditions: filing indicators and

enums
• formal grammar (ANTLR) of

supported expressions
• POC: text expressions, QName

implications

requirements:
• increase coverage to 90%

for ars, qrg, qrb
• finalize text and QName

implication solvers'
implementation

• command line interface
• EBA taxonomy tests

21

SOLVING SOLVENCY II ENTRYPOINTS

ENTRYPOINT:
....solvency2/2017-07-15/mod/qrg.xsd

CATEGORIZED EXPRESSIONS:
All: 107*
Numeric: 70; pct of total: 65.42%
Uncategorized: 32; pct of total: 29.91%

VALIDATION RESULTS:
Number of assertion occurrences: 226
Number of success evaluations: 226
Number of failed evaluations: 0

ENTRYPOINT:
....solvency2/2017-07-15/mod/qrb.xsd

CATEGORIZED EXPRESSIONS:
All: 167*
Numeric: 127; pct of total: 76.05%
Uncategorized: 36; pct of total: 21.56%

VALIDATION RESULTS:
Number of assertion occurrences: 361
Number of success evaluations: 347
Number of failed evaluations: 14

ENTRYPOINT:
....solvency2/2017-07-15/mod/ars.xsd

CATEGORIZED EXPRESSIONS:
All: 1286*
Numeric: 408; pct of total: 31.73%
QName implications numeric: 474; pct

of total: 36.86%
Uncategorized: 392; pct of total: 30.48%

VALIDATION RESULTS:
Number of assertion occurrences: 1318
Number of success evaluations: 1315
Number of failed evaluations: 3

Statistics from numeric solver (using Formula Solver v.0.2) for Solvency II entrypoints: qrg, qrb and ars:

*some expressions (e.g. existence checking or duplicated) have been filtered-out before sending to the solver

22

CONTACT

Eugeniusz Tomaszewski
Business Analyst

E-Mail: xbrl@fqs.pl

