

OPEN INFORMATION MODEL

xBRL-JSON

xBRL-CSV

xBRL-XML

PAUL WARREN XBRL INTERNATIONAL

Frankfurt, 19th June 2019

XBRL HISTORY

In 2019, the current version of XBRL is v2.1

XBRL v2.1 was finalised in 2003

XML still seemed like a pretty neat idea

(it was)


```
<Report>
    <Revenue>4337000</Revenue>
    <Costs>1992000</Costs>
    <Profit>2345000</Profit>
</Report>
```

XML was a huge step forward over the binary formats that had gone before

It's 2019 and we live in a world of computers talking to each other via APIs

If you want to make computers talk to each other, you use JSON

JSON? WHAT IS IT?

That's not important right now

What's important is that the world is full of developers who'd rather use JSON than XML

But if you must know...

THE BIGGER PICTURE

JSON is just another syntax

- Good for some things
- Not so good for others

There is a very large global investment in the XBRL v2.1 syntax

What we need is a **model** and a long term **migration path**

THE OPEN INFORMATION MODEL

OIM: A syntax-independent model of an XBRL report

Work with XBRL data in the format that makes most sense

XBRL SIMPLIFICATION

OIM makes a number of assumptions to give a clean, simplified model

Not everything in XBRL v2.1 is supported in OIM

Dual track approach:

- XBRL v2.1 remains supported. Continue using it with existing tools
- 2. Migrate to the OIM subset and get the benefits of OIM tools

OIM CONSTRAINTS

Constraints:

- Simplified, unified dimensional model
- Generalised "links" model (aka "footnotes")
- Simplifying assumptions for DTS references
- No tuples
- No fractions

"Shims" are provided for some features

Constraints are documented in xBRL-XML specification

OIM DESIGN

XBRL: THE GOOD, THE BAD AND THE XLINK

XBRL is built on three standards:

- XML
- *XML Schema
- XLink

XBRL: THE GOOD, THE BAD AND THE XLINK

XML

- Good for mixed <i>content</i>... like iXBRL
- Strong associated validation

XML Schema

- Hideously complex structural validation
- Datatyping system is still best of breed
 - monetary is a decimal is a numeric

XLink

• The less said the better...

OIM DELIVERABLES

OIM – the report model

xBRL-XML

Mappings from existing XML syntax to the model

xBRL-JSON

JSON-based syntax for XBRL reports

xBRL-CSV

CSV-based syntax for XBRL reports

xBRL-JSON

Aims to be the clearest representation of the model

```
"Fact-B90BB051582C5EE9E2AD8C6C79A5CE80": {
    "dimensions": {
        "concept": "dei:EntityCommonStockSharesOutstanding",
        "entity": "cik:0001652044",
        "period": "2018-04-19T00:00:00",
        "unit": "xbrli:shares",
        "us-gaap:StatementClassOfStockAxis": "goog:CapitalClassCMember"
    },
    "value": "348952225"
}
```

When developers ask "what does XBRL look like?" this is what we should show them


```
<dei:EntityCommonStockSharesOutstanding
  contextRef='context 2'
  decimals='INF'
  id='Fact-B90BB051582C5EE9E2AD8C6C79A5CE80'
  unitRef='unit'>
  348952225
</dei:EntityCommonStockSharesOutstanding>
<xbrli:unit id='unit'>
  <xbrli:measure>xbrli:shares</xbrli:measure>
</xbrli:unit>
<xbrli:context id='context 2' >
  <xbrli:entity>
    <xbrli:identifier</pre>
      scheme='http://www.sec.gov/CIK'>
      0001652044
    </xbrli:identifier>
    <xbrli:segment>
      <xbrldi:explicitMember</pre>
        dimension='usgaap:StatementClassOfStockAxis'>
        goog:CapitalClassCMember
      </xbrldi:explicitMember>
    </xbrli:segment>
  </xbrli:entity>
  <xbrli:period>
    <xbrli:instant>2018-04-18</xbrli:instant>
  </xbrli:period>
</xbrli:context>
```


xBRL-CSV

CSV remains ubiquitous

Extremely efficient representation of record-based data

firm, size, country inc, limit, pct collateralized, interest, start, maturity F50E0CWSQFAUV09Q8Z97, ld: Small, UK, 100000000, .70, .040, 2001-06-01, 2020-12-31 AX378AEV345CAME93E45, ld: Medium, US, 200000000, .50, .020, 2010-03-01, 2019-12-31 QWEE5SFSYV452DRG3483, ld: Micro, PL, 300000000, .30, .030, 2016-09-01, 2017-10-31

firm,size,country inc,limit,pct collateralized,interest,start,maturity F50E0CWSQFAUV09Q8Z97,ld:Small,UK,10000000,.70,.040,2001-06-01,2020-12-31 AX378AEV345CAME93E45,ld:Medium,US,20000000,.50,.020,2010-03-01,2019-12-31 QWEE5SFSYV452DRG3483,ld:Micro,PL,30000000,.30,.030,2016-09-01,2017-10-31

xBRL-JSON representation of the top row of facts:

```
"t1.r1.c2": {
                                                           "t1.r1.c6": {
 "value": "ld:Small",
                                                              "value": ".040",
 "dimensions": {
                                                              "decimals": 4,
   "concept": "ld:CompanySize",
   "entity": "scheme:01",
                                                              "dimensions": {
   "period": "2017-05-01T00:00:00",
                                                                "concept": "ld:InterestRateChargedAtInception",
   "ld:Firm": "F50E0CWS0FAUV0908Z97"
                                                                "entity": "scheme:01",
                                                                "period": "2017-05-01T00:00:00",
"t1.r1.c3": {
                                                                "ld:Firm": "F50E0CWS0FAUV0908Z97"
 "value": "UK",
 "dimensions": {
   "concept": "ld:CountryOfIncorporation",
   "entity": "scheme:01",
                                                           "t1.r1.c7": {
   "period": "2017-05-01T00:00:00",
                                                              "value": "2001-06-01",
   "ld:Firm": "F50E0CWS0FAUV0908Z97"
                                                              "dimensions": {
                                                                "concept": "ld:LoanStartDate",
"t1.r1.c4": {
                                                                "entity": "scheme:01",
 "value": "10000000",
                                                                "period": "2017-05-01T00:00:00",
 "decimals": 2,
                                                                "ld:Firm": "F50E0CWSQFAUV09Q8Z97"
 "dimensions": {
   "concept": "ld:LimitGranted",
   "entity": "scheme:01",
   "period": "2017-05-01T00:00:00",
   "unit": "iso4217:USD",
                                                           "t1.r1.c8": {
   "ld:Firm": "F50E0CWSQFAUV09Q8Z97"
                                                              "value": "2020-12-31",
                                                              "dimensions": {
                                                                "concept": "ld:LoanMaturityDate",
"t1.r1.c5": {
 "value": ".70",
                                                                "entity": "scheme:01",
 "decimals": 3,
                                                                "period": "2017-05-01T00:00:00",
 "dimensions": {
                                                                "ld:Firm": "F50E0CWS0FAUV0908Z97"
   "concept": "ld:PercentageCollateralisedAtInception",
   "entity": "scheme:01",
   "period": "2017-05-01T00:00:00",
   "ld:Firm": "F50E0CWS0FAUV0908Z97"
```


xBRL-CSV design goals

Focus on record-based data

repeating rows, not arbitrary 2D tables

poes not attempt to cope with existing CSV formats

some level of transformation may be needed

Focus on bulk data

CSV tables should be efficient

xBRL-CSV design

xBRL-CSV report consists of:

- One or more CSV tables
- JSON metadata file defining mapping to XBRL (OIM)

Provides flexibility in layout of table, e.g.

- Dimensions can be applied to columns
- Dimension values for row can be provided in cells

Does not support value transformation, e.g.

Dates must be provided in ISO datetime format

OIM: CHOOSE THE RIGHT TOOL FOR THE JOB

xBRL-XML

 Existing market of mature validators: good for regulatory collection systems

xBRL-JSON

- Easier for developers to work with
- Good for (re)publication of XBRL data

xBRL-CSV

- Very compact for bulk, record-based data
- Good for granular reporting

GET INVOLVED

Join the Working Group!

Provide sample data for xBRL-CSV testing

Help validate the assumptions in the requirements documents

Review the latest drafts of xBRL-CSV and xBRL-JSON

QUESTIONS?

Latest specs:

https://specifications.xbrl.org

Contact:

pdw@xbrl.org

